CRYOTOP® SAFETY KIT
Vitrification Protocol for Cryotop® Method

Vitrification Media VT801 / VT802 & VT601 / VT602
Cryotop® - Open System
Cryotop® SC - Closed System
Vitrification
Vitrification Procedure

OPU ➞ Oocyte Equilibration ➞ Cryotop Vitrification

Culture ➞ Embryo Equilibration

It is different procedures between Oocyte and Embryo for Equilibration.

PART 1

Materials Required

- Vitrification Media VT801 (Ref. 91171) or VT601 (Ref. 91101).
 - No.0 Basic Solution (BS): 1 X 1.5mL vial (Only for Oocyte Vitrification)
 - No.1 Equilibration Solution (ES): 1 X 1.5mL vial
 - No.2 Vitrification Solution (VS): 2 X 1.5mL vials

- Cryotop
 - Cryotop® (Ref. 81111, 81112, 81113, 81114, 81115)
 - Cryotop®SC (Ref. 81121, 81122, 81123, 81124, 81125)

- Repro Plate - K1 (Ref. 83003)
- Cooling Rack (Ref. 84010): Blue styrol box for liquid nitrogen
- Pasteur Pipette **refer to CAUTION
- Stereomicroscope (Turn off the heating plate)
- Stopwatch or Timer (with count up function)
- Liquid Nitrogen
- Tweezers
- 2 Micro pipettes: 2-20μL / 100-1000μL
- Cane
- Storage tank

Additional Materials for Cryotop®SC

- Cooling Rack SC (Ref. 84014)
- Straw Cutter (Ref. 84117)
- Aluminum Block (Ref. 84115)
- Sealer

⚠️ CAUTION

Use a pasteur pipette that has a suitable internal diameter for Oocyte or Embryo. The external diameter of Oocyte is about 120μm and for Embryo, about 120-250μm. This is to optimize the volume of the solutions for the best dilution condition to get the highest survival rate.
PART 2
Preparation for Vitrification

1. Bring BS, ES and VS to room temperature (25-27°C).

2. Write necessary information about a patient on the handle/straw cap of Cryotop (See Figure 2-1). You can also label them.

3. [Cryotop]
 Fill 90% of Cooling Rack with fresh liquid nitrogen.

 [Cryotop SC for closed system]
 Place Aluminum Block in Cooling Rack SC from the beginning. Then fill with fresh liquid nitrogen until it covers the top of the Aluminum Block (See Figure 2-3).

4. Remove the culture dish containing Oocyte or Embryo from the incubator. Check the quality of the Oocyte or the Embryo well with pasteur pipette under the microscope (See Figure 2-4).

 For Oocyte Vitrification, take the cumulus cells off.

 ✶ Compare the width of perivitelline space with thickness of zona pellucida and record it (Ex.1:1). It makes easy to know the completing of the equilibration after immersing in ES.
PART 3

Equilibration

Oocyte Equilibration

![Image of oocyte equilibration steps]

Oocyte Equilibration 1

Write BS, VS1, and VS2 on the lid of Repro Plate. Drop 20μL for BS and 300μL each for VS1 and VS2 on the plate with micro pipette (See Figure 3-1). Immediately put the lid on the Repro Plate.

Oocyte Equilibration 2

Aspirate the Oocyte at the tip of the pasteur pipette. Transfer the Oocyte with minimal volume of medium from the culture dish to the BOTTOM of BS (20μL).

Oocyte Equilibration 3 - For 3 minutes

Set up the stop watch (with count up function). Check the time with the stop watch for the following steps. Add ES 20μL gently to the TOP of BS with the Oocyte moving micro pipette along the well and leave it for 3 minutes (See Figure 3-2).

Oocyte Equilibration 4 - For 3 minutes

Add another ES 20μL gently to the TOP of BS as well and leave it for 3 minutes (See Figure 3-2).

Oocyte Equilibration 5 - For 6 - 9 minutes

Add another ES 240μL gently to the TOP of BS and leave it for 6 - 9 minutes (See Figure 3-2).

For Equilibration, the volume of Oocyte is required to be recovered completely. Oocyte Equilibration is complete when the width of perivitelline space becomes equal to the width before immersing to ES.
Embryo Equilibration

Embryo Equilibration 1

Write ES, VS1 and VS2 on the lid of Repro Plate. Gently invert each vial of ES and VS twice to mix contents. Drop each solution 300µL on the plate using micro pipette (See Figure 3-3). Immediately put the lid on the Repro Plate.

Embryo Equilibration 2

Aspirate the Embryo at the tip of the pasteur pipette (See Figure 3-4). Put the Embryo with minimal volume of medium to the TOP center of ES.

Embryo Equilibration 3 - For 10 - 15 minutes

Set up the stop watch (with count up function). Check the time with the stop watch for the following steps. The Embryo free-falls within 30 seconds. It spontaneously begins to shrink and then gradually returns to its original size with infiltrating ES, which indicates that the Equilibration is complete.

CAUTION

For Blastocyst Equilibration, wait for disappearing of the perivitelline space. Especially, for vitrification of Blastocyst, Day 5 is recommended.

Equilibration time is as follows:

<table>
<thead>
<tr>
<th>Stage</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oocyte</td>
<td>12-15min</td>
</tr>
<tr>
<td>2PN, 4-cell or 8-cell</td>
<td>10-15min</td>
</tr>
<tr>
<td>Morula or Blastocyst</td>
<td>12-15min</td>
</tr>
</tbody>
</table>
PART 4

Vitrification

It is the same procedure for Oocyte and Embryo.

Vitrification 1

After the completion of Equilibration, aspirate the Oocyte (Embryo) in ES at the tip of pasteur pipette (See Figure 4-1). Transfer the Oocyte (Embryo) to the surface center of VS1 with minimal volume of ES. Blow only the Oocyte (Embryo) out to VS1. To avoid getting the remaining ES in the pasteur pipette into the VS1, blow out the ES to the outside of the well. Aspirate fresh VS1 and blow it out again to the outside of the well. Aspirate fresh VS1 into the pasteur pipette.

Vitrification 2 - Within 0.5 minute

Aspirate the Oocyte (Embryo) in VS1 with the pasteur pipette and blow it out to VS1. Quickly stir five times around the Oocyte (Embryo). Repeat the aspirating, blowing out and stirring three times changing the positions in VS1 (See Figure 4-2). Displace the outer solution of the Oocyte (Embryo) to VS1 completely until the remaining ES visually disappears.

Vitrification 3 - Within 0.5 minute

Blow out the remaining VS1 in the pasteur pipette to the outside of the well. Aspirate fresh VS2 into the pasteur pipete, and then aspirate the Oocyte (Embryo) in VS1 at the tip of the pipette. Transfer the Oocyte (Embryo) to VS2 with minimal volume of VS1. Stir around the Oocyte (Embryo) changing positions twice with the pasteur pipette in VS2 (See Figure 4-2). This step is completed when the outer Oocyte (Embryo) is displaced to VS perfectly and the flat shrinking in cause of dehydration is observed.

Vitrification 4

Place the Cryotop under a microscope (Logo should be up) and adjust the focus on the black mark of the Cryotop sheet (See Figure 4-3).
Vitrification 5

Aspirate the shrunk Oocyte (Embryo) in VS2 at the tip of the pasteur pipette (See Figure 4-4). Place the Oocyte (Embryo) by the black mark of Cryotop sheet with minimal volume (less than 0.1μL) of VS2 (See Figure 4-5a and 4-5b). For more than 2 Oocytes (Embryos), make 1 droplet for each (See Figure 4-6a and 4-6b).

Removal of the excess VS on the sheet

After putting Oocytes (Embryos) on the Cryotop sheet, the excess VS should be removed by aspirating using pipette.

Step 1
Put the top of the pipette on the bottom end of the big VS drop.

Step 2
Slide the pipette horizontally to outside, and make the VS drop lower.

Step 3
Aspirate the excess VS, and minimize the VS drop (not aspirating oocyte).

Figure 4-5a
Good example

Make a planar droplet by the black mark of Cryotop sheet.

Figure 4-5b
Bad example

Make a steri droplet by the black mark of Cryotop sheet. The volume of VS2 is too much.

Figure 4-6a
Good example

Figure 4-6b
Bad example
Cryotop® and Cryotop® SC have different procedures.

Cryotop® – Open System
Vitrification 6-A

Plunge the Cryotop directly into liquid nitrogen. Hold the straw cap with tweezers and insert the Cryotop from sheet end in liquid nitrogen. Then fit the Cryotop with the straw cap by hands screwing tightly in the air (See Figure 4-7).

![Figure 4-7](image)

Hold the straw cap with tweezers and insert the Cryotop into it.
Hold the straw cap with fingers and fit it.
Twist it and make sure if the straw cap fits tightly to the Cryotop.

⚠️ CAUTION
Keep the Cryotop sheet in the liquid nitrogen until transferring to a storage tank. In transferring the Cryotop to other storage tank, keep it in liquid nitrogen. Do not expose of the Cryotop in air until Thawing.
Cryotop®SC – Closed System for Storage
Vitrification 6-B

Plunge the CryotopSC directly into liquid nitrogen. Insert the CryotopSC into the straw cap without putting liquid nitrogen in it. Then seal the straw cap (See Figure 4-8).

Figure 4-8

1. To begin with, stand the straw cap on the Aluminum Block.

2. Set down the straw cap to stabilize and cut the above marking point.

3. Insert the CryotopSC in the straw cap. Be careful not to put liquid nitrogen in the straw cap.

4. Stand the straw cap again, on the Aluminum Block.

5. Seal the upper part of straw cap.

POINT

When you seal the straw cap, be careful not to put liquid nitrogen in it. Temperature is kept under -150°C within the height of 2.5cm above surface of liquid nitrogen. Be careful not to raise the CryotopSC above 2.5cm high. To identify the surface of liquid nitrogen, you can see the black mark on the straw cap.

CAUTION

Keep the CryotopSC in the liquid nitrogen until transferring to a storage tank. In transferring the CryotopSC to other storage tank, keep it in liquid nitrogen. Do not expose of the CryotopSC in air until Thawing.
Preliminarily, fill liquid nitrogen above the surface of the Aluminum Block in the Cooling Rack and leave it until boiling stops. (About 5 min.)

Cut the upper black marking point on the straw cap with the Straw Cutter.

Insert the CryotopSC in the straw cap

Seal the upper part of the straw cap with the Sealer.

POINT

Lean the upper part of the straw cap against the Cooling Rack. This positioning avoids influence of cool air from liquid nitrogen.

CAUTION

Keep the CryotopSC in the liquid nitrogen until transferring to a storage tank. In transferring the CryotopSC to other storage tank, keep it in liquid nitrogen. Do not expose of the CryotopSC in air until Thawing.
Thawing
PART 1

Materials Required

- Thawing Media VT802 (Ref.91182) or VT602 (Ref.91121).
 No.1 Thawing Solution (TS): 2 X 4mL vials
 No.2 Diluent Solution (DS): 1 X 4mL vial
 No.3 Washing Solution (WS): 1 X 4mL vial

- Repro Plate - K1 (Ref. 83003)
- 2 Petri Dish
- Cooling Rack (Ref. 84010): Blue styrol box for liquid nitrogen
- Pasteur Pipette **refer to CAUTION
- Stereomicroscope (Turn off the heating plate)
- Stopwatch or Timer (with count up function)
- Liquid Nitrogen
- Tweezers
- 1 Micro pipette: 100-1000μL

Additional Materials for Cryotop®SC
- Straw Cutter (Ref. 84117)

CAUTION

Use a pasteur pipette that has a suitable internal diameter for Oocyte or Embryo. The external diameter of Oocyte is about 120μm and for Embryo, about 120-250μm. This is to optimize the volume of the solutions for the best dilution condition to get the highest survival rate.
Thawing

PART 2
Preparation for Thawing

1. Warm TS vial (sealed) with a Petri Dish in an incubator to 37°C (>1.5 hours).

2. Bring DS and WS to room temperature (25〜27°C).

3. Retrieve the cane which has the specific Cryotop, quickly immerse the cane in a Cooling Rack filled with fresh liquid nitrogen. Retrieve the specific Cryotop from the cane in the liquid nitrogen. Check the information about the patient on the label of Cryotop.

⚠️ CAUTION
Place the Cooling Rack by the stereo microscope.

4. Write DS, WS1 and WS2 on the lid of a Repro Plate. Gently invert each vial of DS and WS twice to mix contents. Drop 300μL each for DS, WS1 and WS2 on the Repro Plate with micro pipette. Place it on the microscope stage and lid it.
Remove TS vial and the Petri Dish from the incubator and place the Petri Dish on the microscope stage. Gently invert the vial of TS twice to mix contents and pour the full contents into the Petri Dish (See Figure 2-1).

5. Adjust the focus of the microscope to the Petri Dish with TS.
Use pasteur pipette in order to focus easily on the center of the Petri Dish (See Figure 2-2).
PART 3

Thawing

Cryotop® and Cryotop®SC have different procedures.

Cryotop® - Open System

Thawing 1

Carefully twist and remove the straw cap from the Cryotop in liquid nitrogen (See Figure 3-1). Prop it against the corner of the Cooling Rack.

Thawing 2

Be ready to use pasteur pipette keeping the Cryotop in liquid nitrogen. Set up the stop watch (with count up function). Check the time with the stop watch for the following steps.

Thawing 3 - For 1 minute

Quickly immerse Cryotop sheet into TS on the microscope stage. It should be within 1 second (See figure 3-2). Find the Oocyte (Embryo) adjusting the focus on the black mark of the Cryotop sheet. 1 minute after immersing into TS, gently aspirate the Oocyte (Embryo) with the pasteur pipette after dispensing it from the sheet. Aspirate the Oocyte (Embryo) even if it does not dispense from the sheet. Also, aspirate TS until the Oocyte (Embryo) reaches 2mm from the tip of the pasteur pipette (See Figure 3-3).
Cryotop® SC - Closed System

Thawing 1
Stand the CryotopSC on the Aluminum Block.

Thawing 2
Cut the marking point with Straw Cutter.
Put the cutting blade at the black marking point.
Turn the straw cap slowly to cut.

Thawing 3
Be ready to use pasteur pipette keeping the CryotopSC in liquid nitrogen. Set up the stop watch (with count up function). Check the time with the stop watch for the following steps.

Thawing 4
Insert the cut piece of the straw cap into the space between the CryotopSC and the Aluminum Block. This is to take out the CryotopSC easier.

Thawing 5 – For 1 minute
Quickly immerse the CryotopSC sheet into TS on the microscope stage by transferring it linearly. It should be within 1 second (See Figure 3-4). Find the Oocyte (Embryo) adjusting the focus on the black mark of the Cryotop sheet. 1 minute after immersing into TS, gently aspirate the Oocyte (Embryo) with the pasteur pipette after dispensing it from the sheet. Aspirate the Oocyte (Embryo) even if it does not dispense from the sheet. Also, aspirate TS until the Oocyte (Embryo) reaches 2mm from the tip of the pasteur pipette (See Figure 3-5).
PART 4
Dilution

Dilution - For 3 minutes

Blow out only TS in the pasteur pipette into the BOTTOM center of DS slowly (See Figure 4-1a), then gently place the Oocyte (Embryo) on the bottom of the TS layer (See Figure 4-1b). Leave it for 3 minutes. This is for mostly gradual displacement from TS to DS.
Thawing

PART 5

Washing

Washing 1 - For 5 minutes

3 minutes later, after immersing into DS, gently aspirate the Oocyte (Embryo) in DS with the pasteur pipette. Also, aspirate DS until the Oocyte (Embryo) reaches 2mm from the tip of the pasteur pipette (See Figure 5-1).

Blow out only DS in the pasteur pipette into the BOTTOM center of WS1 slowly (See Figure 5-2a), then gently place the Oocyte (Embryo) on the bottom there (See Figure 5-2b). Leave it for 5 minutes. This is also for mostly gradual displacement from DS to WS1.

Washing 2 - For 1 minute

5 minutes later, after immersing into WS1, aspirate the Oocyte (Embryo) with minimal volume of WS1 with pasteur pipette (See Figure 5-3) and transfer it to the TOP center of WS2. After the Oocyte (Embryo) free-falls to the bottom of WS2, do the same work again in WS2 (See Figure 5-4).

Washing 3

Transfer the Oocyte (Embryo) to a culture dish containing the appropriate culture medium. Incubate the Oocyte (Embryo) in a 37°C incubator to complete recovery. Completion of recovery: Oocyte (Embryo) for 2 hours for recommendation.
Vitrification Protocol

Before

- Zygote
- 4 Cell
- Blastocyst

After

1. ES (300 μL) → VS1 (300 μL)
 - 10 – 15 min
 - Within 0.5 min
2. VS1 → VS2 (300 μL)
 - 0.5 min
3. VS2 → WS1 (300 μL)
 - 1 min
4. WS1 → WS2 (300 μL)
 - 5 min
5. WS2 → DS (300 μL)
 - 3 min
6. DS → TS (Warming)
 - +4200°C / min
7. TS → LN₂ (Cooling)
 - -23000°C / min
8. LN₂ → Cryotop
9. Cryotop → Embryo
 - 1 min, 37°C
Vitrification Protocol

BS 20μL 3min

ES Step 1 20μL 3min

ES Step 2 20μL 6-9min

ES Step 3 240μL

VS1 300μL within 0.5 min

VS2 300μL 0.5 min

Cryotop\(^\circ\)

LN\(_2\) Cooling (-23000°C / min)

WS2 300μL 1 min

WS1 300μL 5 min

DS 300μL 3 min

TS Warming (+42000°C / min)

1 min, 37°C

Oocyte